
 1

Trust Your Model - Verifying Aerospace System Models
 with Java™ Pathfinder

Peter C. Mehlitz
Perot Systems Government Services

NASA Ames Research Center, M/S 269-2

Moffett Field, CA 94035-1000
(650) 604-1682

pcmehlitz@email.arc.nasa.gov

Abstract—Model Driven Development (MDD) is rapidly
becoming a mainstream practice for the development of
complex aerospace systems. UML has emerged as the de
facto standard for modeling languages, supporting a wide
range of modeling aspects and refinement levels. As a
consequence, models can easily become too complex for
manual verification and simple static analysis.12

This paper describes an approach to using the Java™
Pathfinder (JPF) software model checker to systematically
verify UML state charts. While state machines in general
are amenable to model checking, embedded actions and
guards in UML state charts are not, since they require
execution and analysis of a full programming language to
cover the whole model behavior. Many UML development
systems can produce code from diagrams, but this code is
usually aimed at production systems, and is not suitable for
software model checkers.

Our approach is based on a specific translation scheme from
UML state charts into Java code that (a) is highly readable,
(b) shows close correspondence between diagram and
program, (c) provides a 1:1 mapping between model and
program states, and (d) imposes no restrictions about aspects
and actions that can be modeled.

We have demonstrated scalability and efficiency of this
approach on hierarchical state charts with up to 1000 states,
including verification of incomplete models by means of
guided model checking. This paper provides an overview of
the method based on an exemplary spacecraft model.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. TOOLCHAIN..2
3. UML TO JAVA TRANSLATION3
4. UML MODEL CHECKING WITH JPF5
5. MODEL PROPERTIES...7
6. GUIDED MODEL CHECKING WITH SCRIPTS9
7. CONCLUSIONS AND OUTLOOK..............................11
ACKNOWLEDGEMENTS..11
REFERENCES ..11
BIOGRAPHY ..11
1
1
 1-4244-1488-1/08/$25.00 ©2008 IEEE

2
 IEEEAC paper #1197, Version 2, Updated October 24, 2007

1. INTRODUCTION AND BACKGROUND

The MDD approach – benefits and caveats

Since its introduction by OMG in 2001, Model Driven
Development (MDD [1]) has found widespread use in
Aerospace Engineering. Originally meant to be a software
development approach, it turns out to be especially useful
for the design of complex missions. Since it can cover both
hardware and software functionality, MDD is suitable for
creating complete mission models that not only form a basis
for later development phases, but also enable validation of
mission concepts long before the actual system is built.

As more projects rely on MDD as a crucial development
tool, and models become larger, there is increased need for
consistency of the model itself. This requires a formal,
standardized notation for all modeled aspects. The Unified
Modeling Language (UML [2]) provides such a set of
graphical notations that try to meet this requirement by
striking a balance between well-defined constructs and
flexible extensions that target ease-of-use. While UML does
define diagram languages, it does little to specify what
checks have to be performed to ensure that diagrams are
consistent. This task is left to 3rd party UML development
system vendors, is usually focused on simple static analysis,
and has always been subject to vendor specific
interpretation. This situation is particularly insufficient to
verify consistency of behavioral models.

UML Statecharts – Power and Pitfalls of Embedded Code

UML state diagrams are essentially Harel statecharts [3],
supporting

• hierarchical composition of states

• some notion of concurrency (orthogonal regions)

• completion-, signal- and time- triggers

• entry and exit actions for states

• guard expressions and actions for transitions

The embedded code in guards and actions makes it very
convenient to capture non-statechart logic. Together with
hierarchical composition it forms the basis for scalability of

 2

UML statechart models, providing efficient mechanisms for
refinement.

The downside of actions and guards is that model behavior
might not be comprehensible anymore by looking at the
diagram – the code has to be “executed” in order to
understand the dynamics of the model.

Consider the following example: a spacecraft earth orbit
flight phase is modeled by a composite state EarthOrbit:

Figure 1 -- EarthOrbit Model

From the diagram perspective, this model looks fine – as
soon as the EarthOrbit state is entered, the earth sensor is
checked. If the sensor works, the system automatically
transitions through the Insertion state into the OrbitOps
state, which is the interface for the next nominal flight
phase. If the earth sensor failed, the spacecraft cannot enter
a sustainable orbit and proceeds into the SafeHold state,
which is the interface for an off-nominal entry.

The problem is that the checkSensors() and setMajorMode()
entry actions can represent arbitrarily complex functions.
Assuming that checkSensors() is modeled so that the earth
sensor failure state is treated as a random variable, a
software model checker should explore both possible
transitions out of the Insertion state.

checkSensors(){…
 if (random.nextBoolean())
 failures.add(earthSensor)
 …
}

However, the Insertion state of the example also features an
entry action setMajorMode() which might be subsequently
incorrectly refined so that it actually reverts the effect of
checkSensors(), thus causing the system to always enter the
OrbitOps state no matter what the simulated outcome of the
sensor check was:

setMajorMode(){
 … resetSubsystems() …
}
…
resetSubSystems(){
 … resetFailures() …
}

A typical consistency requirement for our model might be
that all its states are reachable, but in order to check for
compliance, we have to try all possible combinations of

• external stimuli (even sequences)

• internal reactions (action outcomes)

With growing model complexity, this might quickly become
infeasible to perform manually, especially with nested states
or actions. Using our approach, the check can be fully
automated:

>jpf gov.nasa.jpf.StateMachine
 +jpf.listener=.tools.sc.Coverage
 +sc.required=earthOrbit…

======================= error #1
required earthOrbit.safeHold NOT COVERED
…

This demonstrates only one possible model property
(reachability), but shows the value of systematically
exploring all possible model behaviors (including code).
The rest of this paper describes the steps and tools required
to achieve this level of automated verification, and how the
approach can be applied to other types of properties.

2. TOOLCHAIN

In general, our approach requires three steps to verify UML
statecharts:

(1) translate the UML model into a Java program, using a
specific framework and translation scheme

(2) choose model properties to verify, and configure
verification tools accordingly

(3) optionally provide a guidance script that represents the
environment of the model (event sequences)

Figure 2 represents the flow of data. Step (1) is mandatory,
since our model checker only works on Java bytecode, i.e.
binary programs. Step (2) can vary in terms of effort, from
using only generic non-functional properties like “no
unhandled exceptions” that do not require any
configuration, explicit assertions in the model code
(representing safety properties), all the way up to extending
the model checker with classes that implement functional,
domain specific properties. Step (3) is optional, and only
required to (a) verify incomplete models, or (b) reduce the

 3

JPF state space. This is achieved by providing imperative
event sequences representing the model environment,
driving it into a state where the model checking should start.
We will look at each of these steps in order.

Figure 2 - toolchain

3. UML TO JAVA TRANSLATION

This step includes two aspects: (A) defining the format that
diagrams are translated into, and (B) automating this
process.

(A) Target Format

The format of the Java sources that are generated from
UML diagrams is motivated by three major requirements:

(1) Readability – generated sources should be human
readable and should map diagram elements on a 1:1 basis.

(2) No execution policy – the sources should reflect only
structural information from the diagram (state composition,
transitions), and leave execution policy (like order of trigger
invocation) to a configurable runtime system.

(3) Low model checker overhead – since the goal is to apply
a model checker to the generated program, there should be
no constructs causing state space explosion. Model and
program state space should be closely aligned.

The format is based on a UML modeling library that is part
of the Java Pathfinder (JPF [4]) distribution, effectively
encapsulating the interface to the model checker.

Sources are generated according to the following simplified
list of rules, which is also shown in Figure 3:

Figure 3 -- Diagram to Java Translation

(1) each hierarchical diagram system is translated into one
Java class (e.g., MyModel)

(2) each composite or simple state of the diagram system is
translated into a Java class that extends the library class
gov.nasa.jpf.statechart.State. Sub-states of a composite state
are translated into nested classes (e.g. MyModel.A)

(3) each trigger is translated into a void method of the
source state (e.g. e1 → A.e1(..)), possibly taking parameters
of restricted types (int, double, String etc.).

(4) transitions are represented by calling
setNextState(targetState) from inside of trigger methods.
Trigger actions are implemented inside the trigger method
bodies

 4

(5) each State class has a corresponding field inside its
encapsulating class, which is instantiated by using a default
constructor. Instantiation of initial states is wrapped into a
State.makeInitial(newState) call.

(6) entry/ and exit/ actions are translated into entryAction()
and exitAction() methods of the corresponding state.

(7) completion triggers are implemented as completion()
methods of the source state

(8) trigger guards become boolean Java expressions inside
of trigger methods

(9) end states are represented by calling State.setEndState()
from inside of their corresponding trigger methods.

There is no explicit target construct for orthogonal regions,
which are simply represented by having more than one sub-
state field initialized with State.makeInitial().

Target states are referenced in calls to
State.setNextState(target) by using their corresponding field
names (e.g. class B → b).

The resulting program consists of two layers: (a) the domain
model generated from the diagram, and (b) the UML library
that is part of the model checker distribution and interfaces
the domain model with the software model checker.

Figure 4 Program Structure

The domain model closely corresponds to the UML
diagram(s) and contains no execution policy. It is strictly
focused on the invariant information found in the diagram.

The UML library is highly model checker specific and hides
all the required interfacing from the user. Its main purpose is
to align the diagram and program state space as closely as
possible, and provide the capability to adapt the verification
to specific UML dialects and associated execution policies.

(B) Automated Translation

Due to the separation of the Java program into these two
layers, the model part can be kept almost free of
implementation overhead. It remains concise and readable,
and hence it is possible to create it manually. However, this
is not the preferred mode of operation – ideally, the whole
UML verification process becomes so automated that the
user does not even have to be aware of the Java program.

This requires automatic generation of the domain model
part, which preferably should be done in a generic way.
Depending on the UML integrated development
environment (IDE) in use, two solutions seem appropriate:

(1) using the XML Metadata Interchange (XMI [4]) as an
IDE independent intermediate diagram export format,
together with an IDE external XML-to-Java translator

(2) using configurable code generator features of the IDE
to directly produce the domain model program

Figure 5 -- code generation

Endorsed as an OMG standard, XMI has been established as
a (mostly) platform independent format to store and
exchange UML documents. Since most UML IDEs support
XMI export, and there exist various efficient libraries for
XML parsing (e.g. Apache Xerces), creating an XMI-to-
Java translator is the most portable solution to produce the
domain model sources. We have used this approach together
with the Unimod [5] UML development environment.

The challenge with XMI based translation is the platform
specific storage of embedded code (guard expressions,
actions). Usually, this is only stored as an XML attribute
(i.e. a string literal) and requires an embedded expression
parser.

Provided the UML IDE uses a well defined language for
guards and actions, this limitation can sometimes be

 5

overcome by directly utilizing code generation facilities of
the IDE itself. Many IDEs support code generation based on
an internal data model (e.g. the Eclipse EMF), and allow the
user to configure and adapt the code generation process with
less effort than writing a separate XMI parser. We are
currently implementing this approach based on the iUML
IDE [6,7].

4. UML MODEL CHECKING WITH JPF

Before we look at what kind of properties we can verify in
UML diagrams, we have to briefly discuss the underlying
verification technology, which is model checking [8]. Since
we translate UML diagrams into Java programs, we use the
Java Pathfinder (JPF [9]) software model checker for model
verification.

The JPF model checker

JPF is a highly configurable software model checker for
Java bytecode programs, which was developed at the NASA
Ames Research Center. It can be thought of as a drop in
replacement for a normal Java virtual machine (VM).
Unlike a normal VM, which only executes one path through
the program, depending on input data and scheduling
choices, JPF systematically explores all possible data and
scheduling combinations. JPF can store program states and
detect if states are equivalent, in which case it backtracks to
a previously stored state and continues execution from there.

If JPF finds a property violation (defect), it not only reports
the nature of the defect, but also the complete program trace
– the sequence of operations leading to this defect.

Figure 6 - The JPF Program Model Checker

A detailed description of JPF is neither possible nor
required in the scope of this paper. The system is open
sourced, and available from its public website [9], which
also contains documentation.

Software Model Checking

Here, we only give a short exemplary introduction into
software model checking, and refer to [10] for a better
foundation. Consider the following program:

public class Test {

 public static void main (String[] args){
 Random random = new Random(42); // (1)

 int a = random.nextInt(2); // (2)
 System.out.println("a=" + a);

 //...

 int b = random.nextInt(3); // (3)
 System.out.println(" b=" + b);

 int c = a/(b+a -2); // (4)
 System.out.println(" c=" + c);
 }

}

Depending on the random seed in line (1), executing this
program with a normal Java runtime picks random values
for variables a (2) and b (3), and then computes the variable
c (4) based upon these random choices:

> java Rand
a=1
 b=0
 c=-1

If we depict possible variable value combinations in a tree,
it becomes obvious that our simple program test only yields
one possible execution path, missing variable values for a
and b that would cause exceptions (e.g. a=0, b=2).

Figure 7 - testing

Executing the same program with a model checker like JPF
explores all possible choices, not just one set, and hence
finds the possible defects:

> bin/jpf +vm.enumerate_random=true Test

JavaPathfinder v4.1 - (C) 1999-2007
RIACS/NASA Ames Research Center

========== system under test
application: Test.java

 6

========== search started: 5/23/07 11:49 PM
a=0
 b=0
 c=0
 b=1
 c=0
 b=2

========== error #1
NoUncaughtExceptionsProperty
ArithmeticException: division by zero
 at Rand.main(Test.java:15)
…

Looking at the above output, we see that if the model
checker reaches the end of the program (displays the
computed c value), it does not stop execution like a normal
Java runtime, but automatically looks for other, unexplored
choices. If it finds any, the model checker backtracks to the
corresponding program state (reverting variable values and
program counters), picks the next choice and continues from
there. This process is repeated until no choices are left, or a
property violation is detected:

Figure 8 - model checking

Theoretically, model checking is a strict formal method that
is guaranteed to find any defect that can occur due to our
data and scheduling choices.

UML execution semantics

In the context of model checking UML statecharts, our
primary choices are not thread context switches or random
data input, but enabling events, i.e. the external stimuli for
our model. Each time there is a choice between several
possible events, we want to explore all of these choices
recursively, to make sure that we cover all possible event
sequences.

The program that is model checked by JPF is a generic class
gov.nasa.jpf.sc.StateMachine, which is part of JPFs UML
modeling framework. The generated model class is provided
as an argument when running this program. Our execution
semantics of UML statecharts are mostly defined by the
implementation of the StateMachine class.

Each execution step starts by computing the set of enabling
events, either by inspection of the classes of the currently
active states, or by consulting a guidance script, which we
will introduce in section 6 of this paper. The model checker
then proceeds by processing each event of this set, looking
at each active state to see if it defines a corresponding
trigger method, and if it does, executes this method. In case
the trigger causes a state transition, the new target state is
stored, and subsequently added to the next set of enabling
events. At the end of each execution step, the active state set
is swapped with the next set, and the process is repeated
until there either are no active states anymore, no more
events to process, or a defect is found.

Figure 9 – UML statechart execution semantics

A detailed discussion of the framework implementation is
not required in the context of this paper, since it is mostly
concerned about aligning the UML model states with the
Java program states, i.e. avoiding any overhead that makes
it hard to map a given program state back into the model.
Here, we are more interested in what we can verify about a
UML statechart.

 7

5. MODEL PROPERTIES

There are three different types of properties that can be
checked by JPF in UML statechart programs:

(1) built-in JPF properties

(2) generic, domain specific properties implemented in the
UML library

(3) application specific properties implemented as separate
JPF modules (listeners)

We will give examples for each of these property classes.

(1) Built-in JPF Properties

This category is the most basic one that does not require any
specific JPF knowledge. It includes a generic property

(P1) “no unhandled exceptions”

which holds if the program execution does not explicitly or
implicitly cause any exception that is not handled within the
program itself. As generic as this property is, it is very
useful to specify domain and application specific properties
as assertions, which are Boolean expressions evaluated at
runtime, throwing AssertionError exceptions if the
condition is violated (AssertionErrors are not supposed to
be caught by applications).

Assertions can be used to specify application specific safety
properties, i.e. events that are never allowed to occur.
Assume the following model of the Ascent and EarthOrbit
flightphases of a spacecraft

Figure 10 -- Explicit Safety Property Example

The lasJettison event represents a command that separates a
launch abort rescue system from the top of the spacecraft
stack, and is modeled as a self-transition (i.e. leading back
into the same SecondStage state).

We further assume that the composite state EarthOrbit is
specified in a different diagram, and contains an event
lsamRendezvous, which represents a docking maneuver with
another spacecraft. It is obvious this docking maneuver has
to fail if the spacecraft did not execute a previous
lasJettison, but our diagram model contains no provisions to
enforce this. Moreover, the Ascent and EarthOrbit models
might be done by different developers, not being aware of
implicit assumptions of the other model part (the problem is
not visible at the top level containing both composite states).

Model defects like this can easily be prevented by adding
assertions to the code, in this case the lasmRendezvous
trigger action:

class OrbitOps {…

 void lsamRendezvous(){…
 assert !spacecraft.contains(LAS) :
 ”lsamRendezvous with LAS attached”
 …
 } …
}

This safety property does not require knowledge of
preceding model transitions or JPF internals, and provides
an efficient safeguard when executing the model with JPF:

…

=========== error #1
NoUncaughtExceptionsProperty
AssertionError:
 lsamRendezvous with LAS attached

 at …

=========== choice trace #1
srbIgnition()
stage1Separation()
stage2Separation()
lsamRendezvous()}

…

The (abbreviated) JPF output, which is configurable itself,
shows not only the encountered defect, but also the
sequence of events that caused the error.

(2) Domain Specific Properties of the UML Library

The second category of properties targets UML specific
defects. The corresponding checks are implemented in the
UML library that comes with JPF, and do not require any
specific code in the model. Examples are ambiguous
transitions, illegal exits from orthogonal regions, and
occurrence of events without corresponding triggers
(“unhandled events”). Since JPF is most useful in the

 8

context of state charts with non-trivial actions, we will use
ambiguous transitions to demonstrate UML specific
properties.

Consider a slightly more detailed version of the Ascent state
from the previous example:

Figure 11 -- UML Specific Property Example

Although this diagram has just a modest level of
complexity, it shows how quickly it can become difficult to
manually find problems in large scale, real world models,
even if the defect is visible within the same document.

The property we are interested in can be stated as

(P2) “no single trigger execution can lead to more than
one transition”

which is synonym to the requirement that no trigger method
execution of the model with a given set of arguments can do
more than one setNextState() call.

A closer look at the FirstStage state shows that the abort()
trigger has cascaded guards that branch on the trigger
parameter values. The first level of guards checks the
altitude parameter, and branches accordingly into
AbortLowActiveLAS and AbortHighActiveLAS. A more
careful inspection however unveils that the guard conditions
overlap if altitude=1.2e5, due to using the wrong set of
comparison operators (<=, >=).

Executing the corresponding model program with JPF
automatically finds the defect:

============ error #1
NoUncaughtExceptionsProperty
AssertionError:
ambiguous transitions in: ascent.firstStage
processing event: abort(120000,true)

target-state 1: ascent.abortHighActiveLAS
target-state 2: ascent.abortLowActiveLAS

 at …

=========== choice trace #1
srbIgnition()
abort(120000,true)

…

Even simple defects like this can easily be obfuscated by
diagram details and layout, which shows the value of
executable models.

(3) Application Specific JPF Extension Properties

This category includes the most powerful property checks
but also requires most effort and knowledge to implement
them. Using JPF’s various extension mechanisms, it is
possible to create highly sophisticated checks that do not
involve model instrumentation, and go beyond standard
UML syntax or semantics.

A typical example of checks that fall into this category are
temporal properties. We already looked at a specific one in
the introductory section – reachability. It can be stated as
follows

 (P3) “for every state in the diagram, there has to be a
sequence of event/parameter combinations that finally
cause a transition into this state”

While this might sound trivial from a diagramming
perspective, we saw that the presence of actions and guards
can deceive the visual perception of reachability.

Figure 12 - Reachability Property

To briefly recap, the problem is that the guard for the
Insertion ⇒ SafeHold transition never holds because of the
Insertion entry/setMajorMode() action implementation,
which resets sensor errors.

 9

Since we already looked at the nature of this model defect,
we now focus on the respective implementation of the
property check. Even though the Coverage tool is a generic
extension that can be used with all models, it is typical for
the effort and knowledge that is required to create similar,
application specific checks.

It is important to realize that such a property cannot be
implemented within the application itself, since variables
used to keep track of visit counts would be backtracked by
JPF. Here, we want to accumulate information over all paths
that are explored by the model checker.

In order to do this, we use a specific JPF extension
mechanism called VMListeners, which allows us to create
and configure modules that can subscribe to various
execution events within the JPF virtual machine. When we
run this model through JPF, we specify some additional
command line arguments that define and configure the
listener to use:

>jpf gov.nasa.jpf.StateMachine
 +jpf.listener=.tools.sc.Coverage
 +sc.required=earthOrbit …

The following code fragment is only intended to show the
involved level of required JPF knowledge

…
public class Coverage {
 …

 public void executeInstruction(JVM jvm) {
 Instruction insn =
 jvm.getLastInstruction();
 …
 if (insn instanceof RETURN) {
 MethodInfo mi = insn.getMethodInfo();
 if (mi==visitedMth) {
 ThreadInfo ti
 =jvm.getLastThreadInfo();
 int stateRef = ti.getThis();
 MJIEnv env = ti.getEnv();
 int id = env.getIntField(stateRef,
 "id");
 int nVisits =
 env.getIntField(stateRef,
 "visited");
 int mRef =
 env.getReferenceField(stateRef,
 "machine");
 int mId =
 env.getIntField(mRef, "id");

 allCoverage[mId].addCoverage(id,
 nVisits);
 }
 }
 }

 public void searchFinished(Search search){
 // print allCoverage information, check
 // if any required/forbidden state
 // constraints are violated
 …
 }
 …
}

The invokeInstruction() notification gets called by JPF upon
every completed bytecode, and allows very fine grained
observation of the execution. The searchFinsihed()
notification on the other hand is only invoked at the very
end of the JPF run, and represents a high level callback.

Looking at the instructionExecuted() code fragment, it is
obvious that the developer has to be familiar with JPF
implementation details, i.e. there is a considerable learning
curve. On the other hand, there is almost no limit of what
can be verified with such listener extensions, giving us a
broad range of potential properties, reflecting the underlying
JPF design goals.

6. GUIDED MODEL CHECKING WITH SCRIPTS

A discussion of the UML model checking capabilities with
JPF would be incomplete without mentioning how to guide
the model checker into interesting parts of the model state
space.

Recalling our statement that a model checker is supposed to
find any defect that manifests itself in the model state space,
our last example raises the question of how we ever got past
the defect we showed in our second example: since the
Ascent precedes the EarthOrbit phase, we should always run
into the ambiguity defect before encountering the
reachability problem.

The answer is guided model checking. Per default, the JPF
UML framework only needs to know the name of our
toplevel model class. The so called scriptless mode then
proceeds by inspecting all state classes to identify trigger
methods. In each UML execution step, JPF tries all events
for which there are corresponding trigger methods in the set
of active UML states, which constitutes an exhaustive
search.

This mode is not suitable if our model is not complete yet,
we want to ignore certain defects in preceding states we
already know about, or we want to check if our model
handles a given event sequence correctly. For these cases,
the framework provides a guidance script mechanism that
lets us control the sequence of events to process. In it’s most
simple form, a guidance script only contains explicit
event/parameter combinations:

 10

// simple nominal event sequence

srbIgnition
stage1Separation
lasJettison
stage2Separation
lsamRendezvous
tliBurn
…

The next higher level is to tell JPF about event alternatives
to explore, which is done with the ANY {..} expression:

srbIgnition()
ANY { abort(100000), abort(120000) }

This expands at runtime in two event sequences to execute:

(1) srbIgnition, abort(100000)

(2) srbIgnition, abort(120000)

If we specify a wildcard ‘*’ instead of a list of explicit event
names, JPF will determine the set of events to choose from
by inspection of the currently active states:

srbIgnition()
ANY { * }

By using the REPEAT <n> {..} expression, we can expand
any sequence a given number of times, which means we can
approximate scriptless mode by using a sequence like

REPEAT 1000 {
 ANY { * }
}

This is only an approximation because the repeat count still
constitutes a search depth constraint, whereas scriptless
mode does not.

Event parameter values can be expanded with a regular
expression based syntax:

abort(1[024]00)

generates a set of three events:

{ abort(1000), abort(1200), abort(1400) }

which can also be written as

abort(1000|1200|1400)

Last not least, we can also specify event sequences that are
only processed when a certain state becomes active. This
uses the SECTION <state name> construct, and works
hierarchically, i.e. if JPF does not find a SECTION for an

active state, it recursively tries to find one for its super
states.

The current policy is to stop an ongoing event sequence as
soon as a new state becomes active for which we have a
section specified. This also means that it is easy to create
loops, for example with self transitions, or transitions inside
of a composite state that has a section (which will be re-
entered for each of its child states that does not have a
section of its own).

With this, we can finally present the script that was used in
our last example:

SECTION ascent {
 srbIgnition
 stage1Separation
 lasJettison
 stage2Separation
}

SECTION earthOrbit {
 // covers Insertion and SafeHold
 ANY {*}
}

SECTION earthOrbit.orbitOps {
 lsamRendezvous
 tliBurn
}

This corresponds to the following informal description:

(1) Proceed through the Ascent flight phase with a nominal
event sequence (thus ignoring potential abort defects)

(2) Once the EarthOrbit (composite) state is reached,
explore all possible events, except of the
EarthOrbit.OrbitOps state, for which we also just check the
nominal event sequence

Guidance scripts are a convenient way to direct the model
checker into interesting parts of the state space. However, to
avoid introducing errors on the model environment side, and
therefore unintentionally restrict the state space search, it is
generally a good idea to keep scripts as simple as possible.
When using sections, the user should also be aware of
creating loops, especially if there are counters or other
accumulated data structures in action code of the model,
which would only be terminated by program state matching
of the model checker.

It should also be noted that guidance scripts could be helpful
to achieve scalability of very large models, by breaking
verification down into separate phases.

 11

7. CONCLUSIONS AND OUTLOOK

In this paper, we have shown an approach of how to verify
UML state charts with embedded code in guards and
actions. We first presented a translation scheme from UML
to Java, and then applied the JPF software model checker to
the generated Java program. Based on the structure of these
programs, the underlying UML modeling framework, and
the capabilities of the JPF model checker, we then gave
examples of the property categories that can be verified with
our approach. Finally, we showed how this approach can be
applied to incomplete or large models by means of guidance
scripts.

Due to size limits, we did not describe how the approach
can be combined with compositional verification techniques
to introduce environment assumptions, for example to
constrain the sequence of possible events. We also did not
discuss how to explicitly send events from within actions,
which is a prerequisite for some executable UML dialects,
but can obfuscate the separation between environment
(script) and model (Java program).

While the JPF model checker has been developed and used
since 1999, the UML verification is work in progress. We
have applied the approach to UML statecharts with more
than 1000 states, using execution semantics from different
UML dialects.

Current work is mostly focused on better separation of
model invariants (e.g. state structure), and tools specific
execution policy. We also plan to implement more generic
checkers, especially for temporal properties, and to extend
guidance script semantics. Support for automatic diagram-
to-Java translation will be added for selected UML tools.
The primary goal of this project remains to provide a UML
tool independent way to verify complex models, which is
scalable with respect to both model size and level of
refinement.

ACKNOWLEDGEMENTS

We like to thank the members of the Java PathFinder
development team at NASA Ames Research Center for their
contribution to this project, namely Corina Pasareanu,
Dimitra Giannakopoulou, and Masoud Mansouri-Samani.
Visiting students Mihaela Gheorghiu Bobaru and Suzette
Person provided various suggestions and crucial help for
testing and application of the system. The work reported
here was performed in the Robust Software Engineering
group, headed by Dr. Joseph Coughlan (Technical Area
Lead) and Dr. Michael Lowry (Principal Scientist), and
funded by the NASA Exploration Systems Mission
Directorate’s Exploration Technology Development
Program.

REFERENCES

[1] John D. Poole, Model Driven Architecture: Vision,
Standards and Emerging Technologies, Workshop on
Meta Modeling and Adaptive Object Models, ECOOP
2001

[2] The Unified Modeling Language, OMG Web site
http://www.omg.org/technology/documents/formal/
uml.htm

[3] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3): 231--
274, June 2002

[4] XML Metadata Interchange (XMI) Web site
http://www.omg.org/technology/documents/formal/
xmi.htm

[5] Unimod Web site http://unimod.sourceforge.net/

[6] iUML Web site http://www.kc.com/products/iuml.php

[7] Chris Raistrick, Paul Francis, John Wright, Colin Carter,
Ian Wilkie, Model Driven Architecture with Executable
UML, Cambridge University Press 2007

[8] Beatrice Berard et al, System Software Verification,
Springer-Verlag, 2001

[9] Java™ PathFinder Web site
http://javapathfinder.sourceforge.net/

[10] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda,
Model Checking Programs, Automated Software
Engineering Journal.Volume 10, Number 2, April 2003

BIOGRAPHY

Peter Mehlitz is a senior computer
scientist with Perot Systems

Government Services
(PSGS), formerly QSS, working for
the Robust Software Engineering
(RSE) group of the Intelligent
Systems Division at the NASA
Ames Research Center (ARC). As
one of the main developers of the
Java Pathfinder (JPF) software

model checker, he is interested in software model checking,
design patterns and design-for-verification (D4V). Mr.
Mehlitz has more than 25 years of experience in large scale
program development, using a broad spectrum of
programming environments and operating systems. Mr.
Mehlitz holds an M.S. in aerospace engineering, University
of the Federal Armed Forces, Munich, Germany

–

 12

